Blends of dissolved cellulose with acrylic acid copolymers or microfibrillated cellulose
نویسندگان
چکیده
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Eve Saarikoski Name of the doctoral dissertation Blends of dissolved cellulose with acrylic acid copolymers or microfibrillated cellulose Publisher School of Chemical Technology Unit Department of Biotechnology and Chemical Technology Series Aalto University publication series DOCTORAL DISSERTATIONS 10/2015 Field of research Polymer Technology Manuscript submitted 11 September 2014 Date of the defence 30 January 2015 Permission to publish granted (date) 9 December 2014 Language English Monograph Article dissertation (summary + original articles) Abstract The aim of the thesis was to develop dissolved cellulose (dissolved in NaOH/ZnO) based blends with acrylic acid copolymers (poly(ethylene-co-acrylic acid) (PE-co-AA) or poly(acrylamide-co-acrylic acid) (PAA-co-AA)) or microfibrillated cellulose (MFC) in the way they could be used in injection molding or for film/coating applications. This thesis summarizes the research reported in five publications supported by some unpublished results. Rheological studies done in the contexts of this work demonstrate the evolution of the alkaline dissolved cellulose/acrylic acid copolymer suspensions and dissolved cellulose/MFC suspensions during mixing and in relation to blend compositions as the properties were found to be a sum of many factors, including gelation of the suspensions. Uniform quality suspension and the best possible mixing between cellulose and copolymers were obtained by using a method in which the suspension was frozen and thawed between the mixing steps. This enabled uniform morphology with no phase separation before precipitation. With this method we managed to combine the properties of cellulose and the used acrylic acid copolymers as the analyses of the co-precipitated blends indicated good mixing between polymer phases. Good mixing between the polymers also enabled cellulose/PE-co-AA blends to be used in injection molding. Co-precipitated cellulose/PAA-co-AA films showed improved mechanical strength when compared to neat cellulose films. In coating trials, cellulose/acrylic acid copolymer blends demonstrated improved barrier properties compared to neat cellulose coating. In addition, studies of dissolved cellulose/MFC suspensions proved that by blending sufficiently small amounts of microfibrillated cellulose into cellulose solution, it is possible to prepare stable suspensions without phase separation. In rheological studies of MFC suspensions, the use of transparent measuring geometry allowed direct verification of the flocculated nature of MFC suspensions. MFC suspensions were observed in various stages of the flow and it was determined that the decomposition of micro scale MFC network in a water suspension follows the same general behavior as documented for macroscopic fiber suspensions. It was also noticed that ions in the suspending medium severely influence the flocculation and as a result, to rheological behavior of MFC suspensions.The aim of the thesis was to develop dissolved cellulose (dissolved in NaOH/ZnO) based blends with acrylic acid copolymers (poly(ethylene-co-acrylic acid) (PE-co-AA) or poly(acrylamide-co-acrylic acid) (PAA-co-AA)) or microfibrillated cellulose (MFC) in the way they could be used in injection molding or for film/coating applications. This thesis summarizes the research reported in five publications supported by some unpublished results. Rheological studies done in the contexts of this work demonstrate the evolution of the alkaline dissolved cellulose/acrylic acid copolymer suspensions and dissolved cellulose/MFC suspensions during mixing and in relation to blend compositions as the properties were found to be a sum of many factors, including gelation of the suspensions. Uniform quality suspension and the best possible mixing between cellulose and copolymers were obtained by using a method in which the suspension was frozen and thawed between the mixing steps. This enabled uniform morphology with no phase separation before precipitation. With this method we managed to combine the properties of cellulose and the used acrylic acid copolymers as the analyses of the co-precipitated blends indicated good mixing between polymer phases. Good mixing between the polymers also enabled cellulose/PE-co-AA blends to be used in injection molding. Co-precipitated cellulose/PAA-co-AA films showed improved mechanical strength when compared to neat cellulose films. In coating trials, cellulose/acrylic acid copolymer blends demonstrated improved barrier properties compared to neat cellulose coating. In addition, studies of dissolved cellulose/MFC suspensions proved that by blending sufficiently small amounts of microfibrillated cellulose into cellulose solution, it is possible to prepare stable suspensions without phase separation. In rheological studies of MFC suspensions, the use of transparent measuring geometry allowed direct verification of the flocculated nature of MFC suspensions. MFC suspensions were observed in various stages of the flow and it was determined that the decomposition of micro scale MFC network in a water suspension follows the same general behavior as documented for macroscopic fiber suspensions. It was also noticed that ions in the suspending medium severely influence the flocculation and as a result, to rheological behavior of MFC suspensions.
منابع مشابه
Synthesis and Characterization of Graft Copolymers of 2-hydroxyethyl Methacrylate and Some Comonomers onto Extracted Cellulose for Use in Separation Technologies
To develop low-cost and environmentally friendly polymeric materials for enrichment, separation, and remediation of metal ions from water, graft copolymers based on cellulose extracted from pine needles were synthesized by grafting of 2-hydroxy methacrylate (HEMA) alone and with comonomers acrylic acid, acrylamide, and acrylonitrile by benzoyl peroxide initiation. The effects of change in conce...
متن کاملpH-dependent self-assembly: micellization and micelle-hollow-sphere transition of cellulose-based copolymers.
pH-Sensitive micelles are usually made from double-hydrophilic block copolymers which can dissolve molecularly in water in a certain pH range and aggregate spontaneously upon an appropriate change in the pH value. Significant advances in this field have been achieved in recent years.[1] Polymeric hollow spheres have great potential for the encapsulation of large quantities of guest molecules. D...
متن کاملNanopaper Properties and Adhesive Performance of Microfibrillated Cellulose from Different (Ligno-)Cellulosic Raw Materials
The self-adhesive potential of nanocellulose from aqueous cellulosic suspensions is of interest with regard to a potential replacement of synthetic adhesives. In order to evaluate the performance of microfibrillated cellulose from different (ligno-)cellulosic raw materials for this purpose, softwood and hardwood powder were fibrillated and compared to sugar beet pulp as a representative non-woo...
متن کاملMicrofibrillated cellulose and new nanocomposite materials: a review
Due to their abundance, high strength and stiffness, low weight and biodegradability, nano-scale cellulose fiber materials (e.g., microfibrillated cellulose and bacterial cellulose) serve as promising candidates for bio-nanocomposite production. Such new high-value materials are the subject of continuing research and are commercially interesting in terms of new products from the pulp and paper ...
متن کاملRemoval of Cr (vi) from Aqueous Solution Using Graft Copolymer of Cellulose Extracted from Sisal Fibre with Acrylic Acid Monomer
The extraction of cellulose from sisal fiber was done initially using the steam explosion method. Extracted cellulose was grafted with acrylic acid in the presence of ceric ammonium nitrate redox initiator. The grafting phenomenon taking place between cellulose and the acrylic acid was proved by Fourier transform infrared spectroscopy (FTIR). The prepared graft copolymer was used as adsorbent f...
متن کامل